Direct interaction between synaptotagmin and the intracellular loop I-II of neuronal voltage-sensitive sodium channels.

نویسندگان

  • B Sampo
  • N Tricaud
  • C Leveque
  • M Seagar
  • F Couraud
  • B Dargent
چکیده

Synaptotagmin, a synaptic vesicle protein involved in Ca(2+)-regulated exocytosis, displayed direct high affinity interaction with neuronal sodium channels. Monoclonal antibodies directed against synaptotagmins I and II adsorbed in a concentration-dependent and -specific manner [(3)H]saxitoxin prelabeled sodium channels extracted with detergent from nerve endings. Conversely, co-immunoprecipitation of synaptotagmin was achieved by antibodies against sodium channel subunits. Consistent with the co-immunoprecipitation assays, solubilized [(3)H]saxitoxin-prelabeled sodium channels were trapped on immobilized maltose binding protein (MBP)-synaptotagmin I. In vitro recombinant protein assays were employed to identify the interaction site of synaptotagmin I, which was located on the cytoplasmic loop between domains I and II of the sodium channel alphaIIA subunit. The co-immunoprecipitated synaptotagmin-sodium channel complexes were found to be Ca(2+)-dependent; this effect was mimicked by Ba(2+) and Sr(2+) but not Mg(2+). Finally the complex was shown to be distinct from the synaptotagmin-SNARE protein complex that can selectively interact with presynaptic calcium channels (N and P/Q types). Thus, our findings demonstrate an unexpected and direct interaction between sodium channels and synaptotagmin. The Ca(2+)-regulated association between sodium channels and a protein implicated in vesicular fusion may have intriguing consequences for the establishment and regulation of neuronal excitability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha1A subunit of the P/Q-type calcium channel.

Synaptotagmins are synaptic vesicle proteins containing two calcium-binding C2 domains which are involved in coupling calcium influx through voltage-gated channels to vesicle fusion and exocytosis of neurotransmitters. The interaction of synaptotagmins with native P/Q-type calcium channels was studied in solubilized synaptosomes from rat cerebellum. Antibodies against synaptotagmins I and II, b...

متن کامل

Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I.

N-type Ca2+ channels mediate Ca2+ influx, which initiates fast exocytosis of neurotransmitters at synapses, and they interact directly with the SNARE proteins syntaxin and SNAP-25 (synaptosome-associated protein of 25 kDa) through a synaptic protein interaction (synprint) site in the intracellular loop connecting domains II and III of their alpha1B subunits. Introduction of peptides containing ...

متن کامل

Effect of Sodium Valproate on Ouabain-Induced Arrhythmia in Isolated Guinea-Pig Atria

Sodium valproate (SV), an antiepileptic drug has several mechanism of action. It inhibits voltage sensitive Na+ channels and reduces intracellular Na accumulation. These actions are similar to that of both phenytoin and carbamazepine. We have investigated the direct cardiac action of SV and its effects on ouabain-induced arrhythmia in isolated guinea-pig atria. The guinea-pig atrium was dissect...

متن کامل

Docking Studies of Phthalimide Pharmacophore as a Sodium Channel Blocker

  Objective(s): Recently, phthalimide derivatives were designed based on ameltolide and thalidomide as they possess a similar degree of anticonvulsant potency due to their phenytoin-like profile. The ability of phthalimide pharmacophore to interact with neuronal voltage-dependent sodium channels was studied in the batrachotoxin affinity assay. Therefore, in the present study, a series of 19 com...

متن کامل

Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3.

Voltage-gated sodium (Nav) channels are modulated by a variety of specific neurotoxins. Scorpion beta-toxins affect the voltage-dependence of channel gating: In their presence, Nav channels activate at subthreshold membrane voltages. Previous mutagenesis studies have revealed that the beta-toxin Css4 interacts with the extracellular linker between segments 3 and 4 in domain 2 of Nav channels wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 7  شماره 

صفحات  -

تاریخ انتشار 2000